
IMPACT OF QUEUED INTERACTION ON
PROTOCOL SPECIFICATION AND VERIFICATION

par

Gregor v. Bochmann* et Alain Finkel**

DOCUMENT DE TRAVAIL #650

* Universite de Montreal, Departement d'informatique et de recherche operationnelle

** Centre de recherche informatique de Montreal et Universite de Montreal

DEPARTEMENT D'INFORMATIQUE ET DE RECHERCHE OPERATIONNELLE

Universite de Montreal

JUIN 1988

Impact of queued interaction on protocol specification and verification

Gregor v. Bochmann* and Alain Finkel**

* Universite de Montreal, De"partement d'informatique et de recherche operationnelle.

** Centre de Recherche Informatique de Montreal et Universite de Montreal

(Permanent address: University of Paris-Sud, L.R.I., Bat. 490, 91405 Orsay Cedex,

France.)

Abstract:

The paper shows how a newly developed FSM-oriented specification model can

be used in the design process of a communication protocol. The impact of queued interactions

between different specified processes is the main question addressed in the paper. First, the

specification model provides decidable algorithms for analysing most questions of interest for

the validation of a protocol, even in the presence of unbounded queues. Second, the impact of

queues on the specified system is analysed for a non-trivial example consisting of a simplified

Transport protocol. In particular, the impact of queues at the service interface is discussed. It is

argued that a service interface is better specified with rendezvous interactions between the ser-

vice user and provider. The specification model used in the paper allows the combination of

queued and rendezvous interfaces within the same system.

- 2 -

1. Introduction

For the design and implementation of communication protocols, the establishment

of the protocol specification is an important step. The choice of an appropiate specifiation

language is an important question, since it has an impact on the ease of understanding of the

specification as well as on availability of automated tools for the validation of the specification

and the development of implementations.

One of the major reasons why people model communication protocols using auto-

mata theoretical techniques is to provide a formal framework in which to analyze the systems.

Generally it is the case that detection of design errors with respect to communication protocols

corresponds directly to solving one or more of the classical analysis problems with respect to

the automata theoretic model. Systems of Communicating Finite State Machines (CFSMs) are

very popular among researchers concerned with communication protocols: CFSMs are often

used for the modelling [Sunshine 81], analysis [Bochmann 78], [Brand...83] [Gouda...87] and

synthesis [Zafiropoulo...80] of communication protocols.

When the reachability set of a system of CFSMs is finite we can, at least theoreti-

cally, verify the traditional properties such as deadlock freedom, quasi-liveness, finite termina-

tion ... But if the reachability set is infinite, verification of these properties are in general

impossible. It is reasonably easy to show that simple systems of CFSMs can simulate Turing

machines; thus the analysis problems are in general undecidable [Brand...83]. If we consider

CFSMs interacting with each other using CSP-type input/output operations (rendezvous), there

exist algorithms to verify many properties we want As a matter of fact CFSMs whose chan-

nels are bounded FIFO or rendezvous channels are essentially equal to finite automata: but the

counterpart is the difficulty to simulate unbounded FIFO queues or the "test a zero". Recall

that there can be no algorithm to analysis problems even for the class of CFSMs whose FIFO

- 3 -

alphabets are of size at most two with one unbounded FIFO queue [Brand...83] [Rosier...86].

CFSMs whose FIFO queue alphabets are of size one are easily simulated by a Petri net hence

almost analysis problems are decidable [Brauer 86]. But for restricted models of CFSMs such

as linear systems [Gouda...87] [Choquet...87] it is possible to decide some of these properties.

The reduction of the number of states is achieved with the help of a coverability tree

[Karp...69] [Finkel 87].

One issue which usually arises in the design and implementation of communica-

tion protocols has to do with collision of messages at the same process concerning different

requests, usually related to cross-over of messages within the communication medium. Most

protocols include certain features to resolve such conflict situations. Sometimes cross-over

situations also occur at local interfaces between processes due to the introduction of queued

process communication. It is therefore sometimes proposed to use rendezvous communication

for local interactions, which avoids such cross-over situations. Since certain FSM-based

specification models are based on queued interactions, their adoption has an impact on the

cross-over issue.

This paper presents a newly developed theoretical model [Gouda...87] [Cho-

quet...87] which provides decidable algorithms for many interesting analysis problems and

applies it to the design and verification of a non-trivial protocol example, namely the OSI

Transport protocol with multiplexing. The protocol specification developed here does not cover

the data transfer phase in detail, but concentrates on the connection establishment and clearing

phases. It is influenced by a more complete specification given in [Boch 87k]. Another

verification of a simplified Transport protocol was given in [Bert 82] using the Petri net for-

malism. The formalisme used here is different in several respects. This paper concentrates on

the aspects of multiplexing of several connections and on questions related to the design of

- 4 -

local service interfaces, in particular the avoidance or handling of cross-over situations.

Section 2 gives an introduction to the theoretical model. The discussion of the

Transport example is covered in three sections: Section 3 gives an overview of the connection

establishment and clearing phases and Section 4 deals with the interface with the Transport ser-

vice user. Each section also includes the discussion of the verification of the described protocol

aspects.

2. Specification model: interacting finite state machines

2.1. System of FSMs communicating by FIFO or rendezvous channels

Definition 2.1: A finite state machine (FSM) is a quadruplet M - <S,T,h,eQ> where S is the

finite set of states, T is a finite set of transitions, h is a partial function from S x T into S and

eQ is the initial state.

Definition 2.2: A labelled FSM is a triple (M, X, /) where M is a FSM, X is a finite alphabet

and / is a morphism from T into X*.

In a system of CFSMs, the finite state machines communicate exclusively by exchanging mes-

sages via connecting channels. There are generally two one-directional FIFO or Rendezvous

channels between each pair of machines in the system. Each state transition rule is accom-

panied by either sending or receiving one message to or from one of the output or input chan-

nels of the machine. There also can be internal transition without sending or receiving opera-

tions. More formally, we have:

-5 -

Definition 2.3: A Communicating FSM (CFSM) is a labelled FSM with the alphabet

X = {+alt ..., + an} (j {-bi, ..., -bp} U {X}

A global state s of a system S of CFSMs with FIFO channel is

S = (Sl} S2, ..., Sn, ..., Wijt ...)

where s(- is the current state of machine M,- and w^ is the content in the channel, Cy-, from

machine M,- to My.

Definition 2.4: A global state s of a system of CFSMs with rendezvous channels is

s = (si, ..., sn) where s(- is the current state of machine M,-.

A transition / e Tt of a communicating finite state machine M(- = (5,-, T(-, fy, ,̂-0, /,-) such that M,-

belongs to a system of CFSMs with FIFO channels is fireable from the global state

s = (SL , s2, ..., sn , ..., wij, • • •) in the following three cases:

1. Iff) = X

2. /,<*) = -a

3- /,<*)= +a an(i t̂ 16 input FIFO channel cyV contains a word wy7 which begins with a (i.e.,

The global state s ' is then reached from s by firing t. This new state is defined

in the three cases as follows:

1. s ' = (sh ..., Si_lt ^ (sit t), SM,..., sn, ..., w^, ...)

2. s ' = (si, ..., 5M, ̂ (Si, t), siit ..., sn, ..., Wij.a, ...)

- 6 -

3. J ' (si, ..., */_!, hi (sit t), si+l, ..., sn, ..., \v 'j-t, ...) with wfl = a.w '^

In systems of CFSMs with rendezvous channels, the firing rules are the following:

Definition 2.5: A transition t e 7,- of a CFSM M,- = (sh Tit hit s^, /,•) such that Af,- belongs to

a system of CFSMs with rendezvous channel is fireable from the global state s = (slt ..., sn)

in the following cases

1. /,<;) = X

2. /,{/) = -a and there exists a machine Mk and a channel between M(- and M .̂ such that Mk

has a transition t' for which hk(sk, t') is defined and l£t ") = +a .

3. /(<r) = +a and similarly /z^O^ f ') is defined and lk(t') = -a

The global state s ' which is reached from s by firing f in case (1), or t and t' in

parallel in cases (2), and (3) is defined as follows:

1. s ' = (Sl, SM, ̂ Cv). •*/+!. •••)

2,3. s ' = (si, sk_i, hk (sk, t'), sk+i, • • • Si_i, hfci, f), si+l, • • • sn)

Definition 2.6: The reachability set, RS(S), from the initial state, is the set of all states

which are reachable from the initial state. We associate to a system S of CFSMs a reachability

tree RT(S). The language of a system of CFSMs is defined by L(S) = {x e T* I x fireable

from e0}; L(S) is the set of words labelling a branch in the reachability tree of S. The input

language of a channel is the set of sequences of messages that may pass through a channel.

For CFSMs with FIFO channels, we define bounded channels in the following way. A FIFO

channel C,-, is bounded iff there exists an integer K such that for all global states

s = (51, ..., sn, ..., \Vij , ...) in the reachability set, the length of w^ is always inferior to K .

- 7 -

Interesting properties for systems of CFSMs.

1. The finite termination problem (FTP). Is L(S) finite?

2. The deadlock problem (DP): Is there a finite path in RT(S) that cannot be extended?

3. The finite reachability problem or the boundedness problem (FRP or BP): Is RS(S) finite

or is a channel not bounded?

4. The reachability problem (RP): Given a state s, is s e RS(S)7

5. The partial deadlock problem (PDP): Is there a finite path to a global state such that the

state of one process does not change for all possible extensions.

Note: The CFSM model used in this paper has the property of "blocking receptions", that is,

a machine for which an input is present, but no input transition is specified for its

present state remains leaves the input in the queue and waits for other transitions to be

enabled (the reception is blocked [Zhao 86]). This is in contrast to the model where

an "unspecified reception" is considered an error [Zafiropulo...80].

2.2. Power of the model

There is a price to be paid for choosing systems of CFSMs with FIFO channels as

a modelling tool:

Theorem 2.1 [Brand ...83][Finkel 86] Systems of CFSMs with FIFO channels have the power

of Turing machine when there is at least one unbounded fifo channel involving a messages

alphabet of at least two messages.

- 8-

Colorraly 2.2 There does not exist an algorithm for CFSMs with respect to any of the

aforementioned problems.

Theorem 2.3 For CFSMs interacting with each other using rendezvous, there exist algorithms

to verify the four problems

As a matter of fact, such systems are equivalent to finite automata.

One wants restricted classes of these systems, that leave the FIFO mechanism

intact (in some important way), where most if not all of the analysis problems are decidable.

The goal is to obtain better tools for the analysis of systems that contain queues. As Pachl

observes: "It makes sense to search for a class of CFSMs protocols that is large enough to

contain as many common protocols as possible, but small enough to allow automatic

verification of deadlock-freedom (and other reachability properties)" ([Pachl 86, p.208]) Typical

restrictions that have been considered involve restricting the allowable sequences of messages

that can pass through a fifo channel [Rosier...84] [Choquet...87] [Finkel...88] [Pachl 86]

[Finkel 88]. Recall that there can be no algorithm for any of the four problems even for the

class of CFSMs whose FIFO queue alphabets are of size at most two. CFSMs whose FIFO

queue alphabets are of size one are easily simulated by a Petri net for which the four prob-

lems are decidable. CFSMs whose FIFO queues are bounded or which communicate by ren-

dezvous are essentially equal to finite automata. Again all four problems admit algorihms with

respect to this class. Algorithms tend not to exist for classes that allow one unbounded FIFO

queue over a two letter alphabet.

In this paper, we are using a special class of CFSMs called linear CFSMs. They have been

first defined in [Gouda...87] and some complementary results are given in [Choquet...87] in the

more general framework of Fifo nets [Memmi...85].

- 9 -

Definition 2.7 [Choquet...87] A system of CFSMs is linear iff the input language of each

FIFO channel is included in a linear language «*,-.£*,• • • • z*(- where a,-, £>,-, ..., z(- e A and are

different from each other.

Remark: In [Gouda...87], it is allowed to have a,- = c-t (for example), but this implies fewer

decidable results.

In the general case, there is no algorithm which allows to decide the linearity property. But

there exist a decidable sufficiant condition to be sure that a FIFO channel is linear.

Proposition 2.4. Let M be a finite state machine which puts messages into a FIFO channel /.

If the projection, of the regular language of M on the input alphabet off, is a linear language

then f is linear. Moreover, this condition is decidable.

Sketch of proof: Let us denote by IAf the input language of /. The sufficiant condition is

straighforward. Let us show its decidability.

There exist a finite set of linear languages (on a finite alphabet) in which the input language of

/must be included if it is linear. If IAf= {a^, ..., ap} there exist pi linear languages

{*%,...,«%/{/!, • • • , ip} = {1, ..,/>}}

Hence, for each linear language Lj, j=l, ..., p we check whether

ProJlAf W)) C Lj

where projIA is the projection on the alphabet IAf.

It is decidable because the inclusion of two regular languages is decidable. Decision problems

with respect to linear CFSMs were considered in [Choquet...87], [Choquet 87], where the

- 10-

finite termination problem, the boundedness problem, the deadlock problem and the reachability

problem were all shown to be decidable.

Theorem 2.5 [Choquet...87] The FTP, the DP, the BP and the RP are decidable for linear

CFSMs

Idea of the proof: shows that the language of every linear CFSMs is equal to the language of

some labelled Petri net and given a linear CFSMs illustrates how to effectively construct the

corresponding Petri net. The general idea is for the corresponding Petri net to simulate a fifo

queue over a*j a*2 • • • a*k by 2 * k places; k places are used for synchronisation and k

places are used to keep track of the number of ap , 1 < / < k, in the current state. A structured

set of terminal markings is then constructed that forces the Petri net to faithfully simulate the

linear CFSMs system. The construction is such that the FTP, the DP, the BP and the RP with

respect to linear CFSMs can easily be decided. In this paper, we are going to use a generaliza-

tion of linear CFSMs.

Definition 2.8: A system of CFSMs is semi-linear iff the input language of each FIFO chan-

nel is included in a finite union of linear languages.

Theorem 2.6 The FTP, the DP, the BP and the RP are decidable for semi-linear CFSMs.

Idea of the proof: The language of a semi-linear CFSMs system S is equal to the finite union

of the linear CFSMs systems languages which are included in S. And linear systems can be

analysed with the help of an associated Petri net. Hence by this way the five decidability

results can be generalized to semi-linear CFSMs systems.

-11 -

3. Example: Simple Transport protocol

As an example, we consider throughout this paper the connection and disconnec-

tion phase of a simplified OSI Transport protocol (class 2), similar to the one of [Boch 87**].

The data transfer phase is further simplified, ignoring the aspects of flow control and ack-

nowledgements. Figure 3.1 shows the structure of communicating FSM's in the simplest case

where two user modules establish a Transport connection between one another.

The queues /„ and /„- represent the service interface between a user and its respec-

tive AP module. The following service interactions are exchanged:

Queue /„ (from user to AP):

TCONreq: request for a new connection

TCONresp: positive response to TCONind

TDATAreq: data sent by user

TDISreq: request for a disconnection

Queue/„' (from AP to user):

TCONind: indication of a new connection

TCONconf: confirmation of a new connection

TDATAind: data sent to the user

TDISind: indication of disconnection

TDISconf: confirmation of disconnection

The following protocol messages (PDU's) are exchanged between the two peer AP modules

(through the queues fa ,fa- shown in Figure 3.1):

- 12-

CR : connection request

CC : connect confirm

DT : data PDU

DR : disconnect request

DC : disconnect confirm

A specification of the AP modules is given in Figure 3.2. The notation used in

this and the following figures is as follows: A single arrow in the figure stands for one or more

of the simple transitions defined in Section 2, each of which involve either an input or an out-

put, but not both. The transition labeled "TCONreq/CR", for instance, stands for the succession

of two simple transitions, where the first has "TCONreq" as input and the second produces a

"CR" PDU as output. The symbol "/" means that the following interaction is output. For exam-

ple, the transition from state 4 to state 6 in Figure 3.2 consists of four simple transitions, the

first with input "DR" and the following producing three outputs "TDISind", "DC" and

"TDISconf.

The user module is assumed to exchange interactions with the AP module in a

manner consistent with the AP specification. We assume here that the user and AP module

communicate through rendezvous. In this case, the specification of the most general user

behavior, compatible with the AP module, can be obtained from the AP specification by pro-

jection on the interactions at the user interface, as shown in Figure 3.3. A more detailed dis-

cussion of the user interface, in particular in the presence of queues, is given in Section 5.

To make automatic verifications of this first protocol, we need algorithms to check

deadlock freedom or unboundedness. We are going to show that the six FIFO queues in Fig-

ure 3.1. are semi-linear. As/a has the same input language than/'a, it is sufficient to prove

that fu, f '„ and fa are semi-linear. In order to determine in which order messages are sent

- 13-

through the queues / '„ and fa, we make projections of the AP specification with respect to the

interactions sent over these queues respectively.

For the queue fa, this projection is shown in Figure 3.4(a) which is the projection

of the AP module on the alphabet {CCf)R,CCf>T}. This automaton can be reduced to the

equivalent specificadon of Figure 3.4(b). One easily sees that the possible sequences of mes-

sages sent through this queue is described by the following regular expression

CR* [({CC + CR} . DT* . {DC + DR}) + DR]

This expression shows that the queue fa is semi-linear.

For the queue /„, the expression

(TDISind) * . [((TCONconf + TCONind) . (TDATAind) * . (TDISind TDISconf) +

(TCONind . TDISconf)]

is obtained by the projected state machine (on {TCONconf, TCONind, TDATAind, TDISind,

TDISconf}) of Figure 3.5. It is also linear. Concerning the queue /„ from the user, we con-

sider the projection on {TCONreq, TCONresp, TDATAreq, TDISreq} of the user module

shown in Figure 3.6. The input language of/„ is equal to

(TCONreq) * . [{TCONresp + >. } . (TDATAreq) *] . TDISreq + (TCONreq)*

Hence /„ is semi-linear.

Proposition 3.1. The six FIFO queues are semi-linear.

- 14-

Given this analysis which shows that the system is semi-linear, we can therefore

apply a reachability analysis as described in [Choquet...87]. With the Theorem 2.6, we can

analyse this system. The beginning of the reachability tree is shown in Figure 3.7.

It is straightforward to see that a deadlock is attained in the case of a collision of

two connect requests initiated by both users simultaneously. The two AP modules are in state

2 (wait for CC). There is a deadlock because each of them is waiting for a message CC from

the other. In general, such deadlocks in semi-linear systems can be detected by the coverabil-

ity tree of the associated Petri net.

In general, the case of collision between two requests initiated by different

modules may be resolved in one of the following approaches:

(a) One module aborts is own request and accepts the request from the other module.

(b) The other module aborts its request and accepts the request of the first module.

(c) Both sides abort their proposed action and start again, possibly after a random timeout

to avoid races.

(d) If the two requests can be satisfied by some kind of compromise, this compromise is

accepted by both sides. Note that approaches (a) or (b) are realized by the protocol

design method described in [Gouda 84].

For the connect request collision in our example, the approach (d) would

correspond to the establishment of a single connection between the two user modules in

response to their requests. This approach is, however, in contradiction to the OSI protocol

specification which foresees the establishment of two independent connections in this case. The

4
consideration of multiple connections goes beyond the scope this article. The handling of this

- 15-

problem and the avoidance of the deadlock mentioned above, is described in [Boch 88] using a

formalism related to the one used in this paper.

The approaches (a) or (b) to the above collision problem would mean that the two

AP modules do not have the same behavior, thus leading to a non-symmetric protocol. The

asymmetry could for instance be based on the different Network addresses of the two AP

modules, however, this would again be in contradiction to the OSI Transport protocol

specification and is therefore not further explored.

Approach (c) is the least efficient among the possibilities mentioned above. It is

therefore usually not taken.

4. Modelling the communication service interface

In this section we discuss issues related to the local interface between two state

machines. We consider the interface between the protocol entity and the service user, in partic-

ular. One of the issues is whether queued interactions or rendezvous is more appropriate. Using

the same example discussed above, it is argued that a rendezvous interface is more appropriate

for describing the interface at a high level of abstraction. The introduction of queued interac-

tions requires the specification of additional design choices for the case of cross-over of

interactions at the interface, which seem to be implementation oriented.

4.1. Interface with rendezvous interactions

Figure 3.3 shows a FSM for the user module which is obtained from the

specification of the AP module given in Figure 3.2 by projection [Merl 83] on the set of

interactions taking place at the service interface with the user. This FSM represents the image

of the protocol entity as seen by the user through the interface if interactions proceed through

- 17 -

general, however, a queued interface allows for other event sequences were interactions remain

in the queue while other interactions are sent. In certain cases, even an unlimited number of

interactions may be stored in a queue; this is for instance the case for TDATA interactions

between the AP and user modules.

The queued interaction at an interface may also give rise to the possibility of colli-

sions, as already discussed in Section 3 for AP-to-AP interactions. In the case of our example,

collisions of interactions at the interface may occur for the connection phase when a connect

request from the user and a connection indication from the entity occur "simultaneously". The

two users send the TCONreq message; then the APi module receives TCONreq and sends CR;

the AP2 module receives the CR message, sends a TCONind message to user2 and it goes into

state 3, called "wait for TCONresp". The user2 is in state 2 and waits for a TCONconf; the

TCONind interaction cannot be received by user2 which remains blocked. Also the AP2

module is waiting indefinitely for the TCONresp interaction from user2. We have a deadlock.

Corresponding to the four approaches mentioned in Section 3, the following scenarios may be

followed for handling the situation:

(a) The user aborts its request and accepts the connect indication from the server.

(b) The server aborts the connection for which the indication was given and accepts the

new request from the user.

(c) Both sides abort their proposed action and start again, possibly after a random timeout

to avoid races.

The approach (d) is not feasable, since in general the parameters of the two colliding connec-

tions are incompatible (e.g. different remote addresses).

- 18-

Figure 4.1 shows the added transitions (as dotted arrows) in the specifications of

the user and transport entity for the case that the approach (a) is taken. The approach (b)

could have been chosen as well. The authors consider that the choice of one of these

approaches represents an implementation choice. Therefore such a choice should not be made

in the protocol specification.

Similar collision cases occur for the disconnection phase when the user and the

protocol entity "simultaneously" initiate a disconnection. Additional inputs that must be

expected for these cases are indicated (as dashed arrows) in Figure 4.1. In this case, the

approach (d) above can be taken, since the colliding requests imply the same action. Therefore

the colliding request can be simply ignored, as indicated in the Figure.

43, Reinitialization

The specification discussed so far has a "home state" which is a state that can be

reached from every reachable state. From a theoretical point of view, the home state problem

seems to be decidable because it has been proved decidable for Petri nets [Frutos 87].

The home state of our example is the global state were all queues are empty and

all AP modules are in state 6 ("closed"). In practice, however, we are interested in a

specification were the intial state is a home state such that an unlimited number of Transport

connections can be established successively. Such a specification can be obtained by creating a

new module for each new connection to be established (note that the Transport specification in

[TP FD 85] uses this approach). Remaining in a context were the structure of the communicat-

ing FSM's is determined statically, as discussed in this paper, an equivalent specification can

be obtained by identifying the final state 6 (closed) of the AP module with its initial state 1

(closed). One reason why this approach was not taken in the example of Figure 2.2 is the fact

- 19-

that with such an identification the example does not satisfy the semi-linearity conditions (see

Definition 2.8) which are the basis for the analysis discussed above.

Looking at the specification of Figure 4.1 from this point of view, we notice that

the queues between the AP module and its user module are not necessarily empty when the

modules are in their final state 6, since a TDISreq may remain in the queue in the case of the

disconnect collision case discussed above. If the final and initial states of the AP module are

identified, this interaction may be interpreted by the AP module as a response to a new

TCONind which would be a mistake. The following approaches may be used to solve this

problem:

(a) Model extension: It is possible to extend the specification model by introducing an

additional RESET operation on the queues which can be invoked by the two FSM's

associated with the queue and having the effect of eliminating all interactions in the

queue, leaving it in the empty state [Ansa 84]. This extension gives the power of Tur-

ing machines to the model of semi-linear systems.

(b) Redesign service interactions: It is noted that a similar problem does not occur between

two AP modules for the disconnection interactions at the PDU level (a DR received

after the sending of a DR is interpreted as a DC). A similar approach can be used for

the disconnect interactions at the service level. For instance, the disconnect interactions

could be defined to follow the OSI convention of "confirmed" service elements [],

which means that a TDISreq is followed by a TDISconf (as in Figure 4.2) and a TDI-

Sind is followed by a TDISresp sent by the user module. In the case of disconnect col-

lision, the TDISreq and TDISind received could be interpreted as TDISresp and

TDISconf, respectively, by the AP and user modules.

-20-

This redesign of the service interface (point (b) above) is not perfect, however.

After the sending of a TDISresp, the user module may immediately invoke a new TCONreq

which may arrive at the AP module before the DC PDU is received from the peer side. The

processing of the new TCONreq should wait until the old connection has been completely

closed. This problem, again, can be solved by different approaches:

(i) Using a FSM model with blocked receptions (see Section 2.1). In this case the

TCONreq cannot be received in the "wait-for-DC" state (5) and remains in the

queue until the AP module reaches the initial "closed" state. This is the model

assumed in this paper; it is also used in Estelle [Este 87] and can be modelled in

SDL [SDL 87] by be SAVE construct.

(ii) Redesigning the service interface in order to introduce explicit flow control on new

TCONreq interactions. This is the approach which originally lead to the use of a

TCONconf after a TDISind in Figure 3.2 (see also [Boch 87K]). Combined with

the redesign above, this would lead to an interface as defined in Figure 4.2 except

that after a TDISind, an additional TDISresp should be returned by the user before

the AP terminates by a TDISconf. With this approach a new TCONreq is only

received by an AP module, after it has sent a TDISconf.

6. Bibliography

[Aho...79] A.V. Aho, J.D. Ullman and M.Yannakakis "Modelling communications protocols

by automata" in 20th Annual Symp. on Found, of Comp. Sci. (1979).

[Ansa 84] J.P. Ansard, R. Castanet, P. Guitton and O. Rafiq, "Some operational tools in an

OSI study environment. Proc. ACM SIGCOMM Symposium. 1984.

-21 -

[Berthelot...82] G. Berthelot and R. Terrat "Petti nets theory for correctness of protocols"

IEEE Trans, on Comm. COM 30 (12), (December 1982).

[Bochmann 78] G. Bochmann "Finite state description of communication protocols" Proc.

Comp. Network Protocols Symp., pp. 361-371, Liege, Belgium (February 1978).

[Boch 87k] G.v. Bochmann, "Specifications of a simplified Transport protocol using different

formal description techniques", submitted to Computer Networks and ISDN Sys-

tems.

[Boch 88] G.v. Bochmann and A. Finkel, "Protocol specification and verification using FIFO

nets", Technical report in preparation.

[Brand...83] D. Brand and P. Zafiropulo "On communicating finite-state machines" J.A.C.M.,

Vol. No. 2, pp. 323-342 (April 1983).

[Brauer...86] W. Brauer, W. Reisig and G. Rozenberg (Eds) "Petri Nets: Central models and

their properties" Advances in Petri Nets 1986, Part 1, Proceedings of an

Advanced Course Bad Honnef, LNCS 255, Springer Verlag (September 1986).

[Choquet...87] A. Choquet and A. Finkel "Simulation of linear fifo nets by Petri nets having a

structured set of terminal markings" in 8th European Workshop on applications

and theory of Petri nets, Zaragoza, Spain (June 1987).

[Choquet 87] A. Choquet "Analyse et proprietes des processus communiquant par files fifo:

reseaux a files a choix libre topologique et reseaux a files lineaires" These de 3-

ieme cycle, University Paris 11 (September 1987).

[Chow...85] C-H. Chow, M.G. Gouda and S.S. Lam "A discipline for constructing multiphase

communication protocols" ACM Trans, on Comp. Syst., Vol. 3, No. 4, (November

- 22-

1985).

[Courtiat...84] J.P. Courtiat, J.M. Ayache and B. Algayres "Petri nets are good for protocols"

ACM 0-89791-136-9/84/006/0066 (1984).

[Este 87] ISO DIS9074 (1987) "Estelle: A formal description technique based on an extended

state transition model".

[Finkel 86] A. Finkel "Structuration des systemes de transitions: applications au controle du

parallelisme par files fifo" These d'Etat, University of Paris 11, (June 1986).

[Finkel 87] A. Finkel "A generalization of the procedure of Karp and Miller to Well Struc-

tured Transition Systems" 14th ICALP, Karlsruhe, RFA (July 1987).

[Finkel...87] A. Finkel and L. Rosier "A survey on fifo nets" Report of the University of

Montreal, No. 630, submitted. (October 1987).

[Finkel...88] A. Finkel and A. Choquet "Fifo nets without order deadlock", Acta Informatica

25 (1988).

[Frutos 87] D. de Frutos Escrig "Decidability of the home state property for Petri nets"

(1987).

[Gouda 84] M. Gouda and Y. T. Yu, "Synthesis of communicating Finite State Machines..."

IEEE Trans, on Com-32, No. 7, (July 1984).

[Gouda...87] M. Gouda, E. Gurari, T. Lai and L. Rosier "On deadlock detection in systems of

communicating finite state machines" Computers and Artificial Intelligence, Vol.

6, No. 3., pp. 209-228. (1987).

- 2 3 -

[Gouda...87] M. Gouda, E. Gurari, t. Lai and L. Rosier "On deadlock detection in systems of

communicating finite state machines" Computers and Artificial Intelligence, Vol.

6, No. 3, pp. 209-228. (1987).

[Jurgensen...84] W. Jurgensen and S. T. Vuong "Formal specification and validation of ISO

transport protocol components, using Petri nets" ACM 0-89791-136-9/84/006/0075

(1984).

[Lotos 87] ISO DIS8807 (1987), "LOTOS: a formal description technique".

[Memmi...85] G. Memmi and A. Finkel "An introduction to Fife nets - monogeneous nets: a

subclass of Fifo nets" T.C.S. 35 (1985)

[Memmi...86] G. Memmi and J. Vautherin "Analysing nets by the invariant method"

L.N.C.S. 254, pp. 300-336.

[Pachl 86] J. Pachl "Protocol description and analysis based on a state transition model with

channel expressions" 6th Intern. Workshop on Protocol Specification, Testing,

and Verification, Montreal, Quebec, IFIP 86, North Holland (June 1986).

[Rosier...86] L. Rosier and H. Yen "Boundedness, empty channel detection, and synchronisa-

tion for communicating finite automata" T.C.S. 44 pp. 69-105 (1986).

[Sarikaya...86] B. Sarikaya and G. Bochmann (Editors) "Protocol Specification, Testing, and

Verification, 6", IFIP 86, North Holland (1987).

[SDL 87] CCITT SG XI, REcommendation Z.100 (1987)

[Sunshine 81] C. Sunshine "Formal modelling of communication protocols" Computer Net-

works and Simulation 2, North Holland, Schoemaker (Ed.), (1982).

- 2 4 -

[TP FD 85] ISO TC97/SC16/SC6, "Formal specification of the Transport protocol", (April

1985).

[Zafiropulo...80] P. Zafiropulo and AL "Towards analyzing and synthesizing protocols" IEEE

Trans, on Comm., Vol. COM-28, No. 4, pp. 651-661, (April 1980).

User User

fu f u ' fu fu1

AP AP

fm

fm1

Figure 3-A

-?:

3 ;

4,

S :

Figure 3.2

Tco/0

OifV_A *
in

g>
L.

m
Q)

3
D)
L.

HJ

IX

CO
k.
13
D)
ii.

rr
OJ

rj
D>

•• ,

cc/n>/sAi
>R ^/TCosJ^f

f r ^^
W*/V,-,I>R) (^U,^-,-j

» /^ ŝ.

: ^'^VV^ffmn^

3.7 /4

to
c—i
CD

(Q
C

c_
rt

.,

10

CO
c
—\D

ft

T]
(5'
c

o
0-

